P3D File Format - ODOLV7: Difference between revisions
Categories:
m (ODOL moved to P3D File Format - ODOLV7: ...) |
m (→LZ in ODOL) |
||
| Line 137: | Line 137: | ||
''Lempel-Ziv compression | ''Lempel-Ziv compression | ||
Note1. | |||
Rregardless of method, 4 extra bytes representing the checksum exist at end of the data count. | |||
Note2. | |||
The compression code is identical to that employed by pbo packed structures. However, unlike pbo's, the size of the compressed data is unknown, only it's ultimate length. The code below fudges it. | |||
==== pascal code==== | ==== pascal code==== | ||
| Line 196: | Line 204: | ||
'''end'''; | '''end'''; | ||
'''end'''; | '''end'''; | ||
BlockRead(F,crc,4); ''// | BlockRead(F,crc,4); ''// 4 byte checksum.'' | ||
result:= pi; | result:= pi; | ||
'''end'''; | '''end'''; | ||
| Line 242: | Line 250: | ||
} | } | ||
} | } | ||
'''return''' pi; | '''return''' pi;// next 4 bytes = checksum | ||
} | } | ||
Revision as of 05:39, 28 June 2007
Overall
// uint unsigned integer 32bit
// word unsigned short integer 16bit
struct ODOL
{
char Signature[4]; //"ODOL"
uint Version; // 7
uint LodCount; // at least one
struct Lod[LodCount]
{
uint VerticesCount;
uint VerticesAttribs[VerticesCount]; // if VerticesCount > 255 then array is compresed by LZ algorithm. see LZ in ODOL.
uint VerticesCount; // again same value
struct UVset[VerticesCount]; // if VerticesCount > 127 then array is compresed by LZ algorithm. see LZ in ODOL.
uint VerticesCount; // again same value
struct VerticesPosition[VerticesCount];
uint VerticesCount; // again same value
struct VerticesNormal[VerticesCount];
float fvalue[12]; // unknown values // containts some max/min vertices positions and so far
uint TexturesCount;
char Textures[...]; // zero ended 'C' strings 'd','a','t','a','\','1','.','p','a','a','\0','d','a','t','a','\','2','.','p','a','a','\0'...
//read until count of founded char('\0') equil TexturesCount;
uint Table1stCount;
word Table1st[Table1stCount];// if Table1stCount > 511 then array is compresed by LZ algorithm. see LZ in ODOL.
uint Table2ndCount; // Table2ndCount is same value like VerticesCount
word Table2nd[Table2ndCount];// if Table2ndCount > 511 then array is compresed by LZ algorithm. see LZ in ODOL.
//tables can by used to join vertices, each face has got 3 or 4 vertices that are seperated for each face in odol format
//every vertex is owned only by 1 face
//mlodvertexindex = Table1st[ Table2nd[ odolvertexindex ] ];
uint FacesCount;
uint uvalue; // unknown value
struct Face[FacesCount];
uint uvalue2; // unknown value
char uchar[18*uvalue2]; // unknown value
uint NamedSelectionCount
struct NamedSelection[NamedSelectionCount]
uint NamedPropetiesCount;
struct NamedPropeties[NamedPropetiesCount]
uint uvalue7;// unknown value
struct ustruct[uvalue7]; // unknown value
uint ProxiCount;
struct Proxi[ProxiCount];
}; // end of lod
uint ResolutionCount; // same as LODCount
float Resolution[ResolutionCount];
.
.
. // folows some unknow data.
}; // end of ODOL;
Faces
struct Face
{
uint Attribs;
word TextureIndex; //if ((int)TextureIndex==-1) no texture;
char CountOfVertices; // 3 or 4
word VerticesIndex[CountOfVertices]; //! size of array is not constant.
};
NamedSelection
struct NamedSelection
{
char name[...]; // zero ended string
uint VerticesSelectedCount;
word VerticesSelected[VerticesSelectedCount];// if VerticesSelectedCount > 511 then array is compresed by LZ algorithm. see LZ in ODOL.
uint uvalue3; // unknown value
word uarray[uvalue3];// unknown value
uint uvalue4; // unknown value
uint uarray[uvalue4];// unknown value // if VerticesSelectedCount > 255 then array is compresed by LZ algorithm. see LZ in ODOL.
char uchar; // unknown value
uint uvalue5; // unknown value
uint uarray[uvalue5];// unknown value
uint FacesSelectedCount;
word FacessSelected[FacesSelectedCount]// if FacesSelectedCount > 511 then array is compresed by LZ algorithm. see LZ in ODOL.
uint uvalue6; // unknown value
char uarray[uvalue6];// unknown value
};
VerticesPosition
struct VerticesPosition
{
float x,y,z;
};
VerticesNormal
struct VerticesNormal
{
float x,y,z;
};
UVset
struct UVset
{
float U,V;
};
Proxi
struct Proxi
{
char Name[...] // zero ended string
struct ustruct {...};// size same as char[56]; // unknown value
};
ustruct
struct ustruct // unknown value
{
uint uvalue8;// unknown value
uint uvalue9;// unknown value
char uarray[12*uvalue9];// unknown value :-( i know nothing about it
};
NamedPropeties
struct NamedPropeties
{
char Name[...];
char Value[...]; // 'n','o','s','h','a','d','o','w','\0','1','\0'...
};
LZ in ODOL
Lempel-Ziv compression
Note1.
Rregardless of method, 4 extra bytes representing the checksum exist at end of the data count.
Note2. The compression code is identical to that employed by pbo packed structures. However, unlike pbo's, the size of the compressed data is unknown, only it's ultimate length. The code below fudges it.
pascal code
function LZBlockRead(var F:file; var outdata:array of byte;szout:integer):byte;
var
k, r, pr, pi,po,i,j:integer;
flags:word;
buf:array[0..$100e] of byte;
c:byte;
crc:integer;
begin
po:=0;
pi:=0;
flags:=0;
r:=0;
for k := 0 to $100F-1 do buf[k] := $20;
while (po < szout) do
begin
flags:= flags shr 1;
if ((flags and $100)= 0) then
begin
BlockRead(F,c,1); // direct reading from file
inc(pi);
flags := c or $ff00;
end;
if (flags and 1)=1 then
begin
if (po >= szout)then break;
BlockRead(F,c,1); // direct reading from file
inc(pi);
outdata[po] := c;
inc(po);
buf[r] := c;
inc(r);
r :=r and $fff;
end
else
begin
i:=0;
BlockRead(F,i,1); // direct reading from file
inc(pi);
j:=0;
BlockRead(F,j,1); // direct reading from file
inc(pi);
i :=i or ((j and $f0) shl 4);
j := (j and $0f) + 2;
pr := r;
for k := 0 to j do
begin
c := buf[(pr - i + k) and $fff];
if (po >= szout) then break;
outdata[po]:= c;
inc(po);
buf[r]:= c;
inc(r);
r :=r and $fff;
end;
end;
end;
BlockRead(F,crc,4); // 4 byte checksum.
result:= pi;
end;
C code
int Decode(unsigned char *in,unsigned char *out,int szin,int szout)
{
szin = szin > 0? szin: 0x7fffffff;
int i, j, k, r = 0, pr, pi = 0,po = 0;
unsigned int flags = 0;
unsigned char buf[0x100F], c;
for (i = 0; i < 0x100F; buf[i] = 0x20, i++);
while (pi < szin && po < szout)
{
if (((flags >>= 1) & 256) == 0)
{
if(pi >= szin)break;
c = in[pi++];
flags = c | 0xff00;
}
if (flags & 1)
{
if(pi >= szin || po >= szout)break;
c = in[pi++];
out[po++] = c;
buf[r++] = c;
r &= 0xfff;
} else
{
if(pi + 1 >= szin)break;
i = in[pi++];
j = in[pi++];
i |= (j & 0xf0) << 4;
j = (j & 0x0f) + 2;
pr = r;
for (k = 0; k <= j; k++)
{
c = buf[(pr - i + k) & 0xfff];
if(po >= szout)break;
out[po++] = c;
buf[r++] = c;
r &= 0xfff;
}
}
}
return pi;// next 4 bytes = checksum
}