sqrt: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
No edit summary
m (Text replacement - "<sqf>([^↵][^<]*↵[^<]*)<\/sqf>" to "<sqf> $1 </sqf>")
 
(60 intermediate revisions by 12 users not shown)
Line 1: Line 1:
back to [[Scripting_Reference#S|COMREF]]
{{RV|type=command


<h2 style="color:#000066">'''sqrt ''x'''''</h2>
|game1= ofp
|version1= 1.00


|game2= ofpe
|version2= 1.00


'''Operand types:'''
|game3= arma1
|version3= 1.00


'''x:''' [[Number]]
|game4= arma2
|version4= 1.00


'''Type of returned value:'''
|game5= arma2oa
|version5= 1.50


[[Number]]
|game6= tkoh
|version6= 1.00


'''Description:'''
|game7= arma3
|version7= 0.50


Returns square root of '''x'''.
|gr1= Math


|descr= Returns square root of x.


'''Example:'''
|s1= [[sqrt]] x


_sq = '''sqrt''' 9 ...... Result is 3
|p1= x: [[Number]]
 
|r1= [[Number]]
 
|x1= <sqf>private _squareRoot = sqrt 9;  // returns 3</sqf>
 
|seealso= [[Math Commands]] [[a_%5E_b|a ^ b]]
}}
 
<dl class="command_description">
 
<dt><dt>
<dd class="notedate">Posted on 18:05, 24 August 2014 (EST)</dd>
<dt class="note">[[User:Benargee|Benargee]]</dt>
<dd class="note">
Alternatively use "x^0.5" or "x^(1/2)".
<sqf>
_sq = 9^0.5; // result is 3
_sq = 9^(1/2); // result is 3
</sqf>
You can use this method to get any root.
Cubed root = x^(1/3) or x^0.333[repeating].
Root 4 = x^(1/4) or x^0.25.
</dd>
 
</dl>

Latest revision as of 19:43, 3 September 2024

Hover & click on the images for description

Description

Description:
Returns square root of x.
Groups:
Math

Syntax

Syntax:
sqrt x
Parameters:
x: Number
Return Value:
Number

Examples

Example 1:
private _squareRoot = sqrt 9; // returns 3

Additional Information

See also:
Math Commands a ^ b

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note
Posted on 18:05, 24 August 2014 (EST)
Benargee
Alternatively use "x^0.5" or "x^(1/2)".
_sq = 9^0.5; // result is 3 _sq = 9^(1/2); // result is 3
You can use this method to get any root. Cubed root = x^(1/3) or x^0.333[repeating]. Root 4 = x^(1/4) or x^0.25.