vectorCrossProduct: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
(see also)
(example)
Line 27: Line 27:
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |= Example 1
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |= Example 1
|x2= <code>_vectorUp = [0,1,0] [[vectorCrossProduct]] [-1,0,0]; //[0,-0,1]</code> |= Example 2
|x2= <code>_vectorUp = [0,1,0] [[vectorCrossProduct]] [-1,0,0]; //[0,-0,1]</code> |= Example 2
|x3= <code>_vectorSide = ([[vectorDir]] [[player]]) [[vectorCrossProduct]] ([[vectorUp]] [[player]]);</code> |= Example 3
____________________________________________________________________________________________
____________________________________________________________________________________________



Revision as of 16:49, 10 December 2014

Hover & click on the images for description

Description

Description:
Cross product of two 3D vectors.
In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain surfaceNormal). To invert direction of the normal, swap arguments around.
Groups:
Uncategorised

Syntax

Syntax:
vector1 vectorCrossProduct vector2
Parameters:
vector1: [x, y, z] Array
vector2: [x, y, z] Array
Return Value:
Array - vector: [x, y, z]

crossProduct.jpg

Examples

Example 1:
_vector = [1,1,1] vectorCrossProduct [2,2,2];
Example 2:
_vectorUp = [0,1,0] vectorCrossProduct [-1,0,0]; //[0,-0,1]
Example 3:
_vectorSide = (vectorDir player) vectorCrossProduct (vectorUp player);

Additional Information

See also:
vectorAddvectorDiffvectorDotProductvectorCosvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedvectorFromTo

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note

Notes

Posted on 28 Jun, 2014
ffur2007slx2_5
(ArmA3 1.22)Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [(y1 * z2) – (z1 * y2),(z1 * x2) – (x1 * z2),(x1 * y2) – (y1 * x2)]; It is recommended to use vectorCrossProduct instead of BIS_fnc_crossProduct.

Bottom Section