vectorCrossProduct: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
m (format)
m (template:command argument fix)
Line 9: Line 9:


| Cross product of two 3D vectors.  
| Cross product of two 3D vectors.  
<br>In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain [[surfaceNormal]]). To invert direction of the normal, swap arguments around. |= Description
<br>In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain [[surfaceNormal]]). To invert direction of the normal, swap arguments around. |DESCRIPTION=
____________________________________________________________________________________________
____________________________________________________________________________________________


| vector1 '''vectorCrossProduct''' vector2 |= Syntax
| vector1 '''vectorCrossProduct''' vector2 |SYNTAX=


|p1= vector1:  [[Array]] - in form [x, y, z] |= Parameter 1
|p1= vector1:  [[Array]] - in form [x, y, z] |PARAMETER1=


|p2= vector2:  [[Array]] - in form [x, y, z] |= Parameter 2
|p2= vector2:  [[Array]] - in form [x, y, z] |PARAMETER2=


| [[Array]] -  vector [x, y, z]  
| [[Array]] -  vector [x, y, z]  
<br><br>
<br><br>
[[Image:crossProduct.jpg|300px]]|= Return value
[[Image:crossProduct.jpg|300px]]|RETURNVALUE=  




____________________________________________________________________________________________
____________________________________________________________________________________________
   
   
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |= Example 1
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |EXAMPLE1=
|x2= <code>_vectorUp = [0,1,0] [[vectorCrossProduct]] [-1,0,0]; //[0,-0,1]</code> |= Example 2
|x2= <code>_vectorUp = [0,1,0] [[vectorCrossProduct]] [-1,0,0]; //[0,-0,1]</code> |EXAMPLE2=
|x3= <code>_vectorSide = ([[vectorDir]] [[player]]) [[vectorCrossProduct]] ([[vectorUp]] [[player]]);</code> |= Example 3
|x3= <code>_vectorSide = ([[vectorDir]] [[player]]) [[vectorCrossProduct]] ([[vectorUp]] [[player]]);</code> |EXAMPLE3=
____________________________________________________________________________________________
____________________________________________________________________________________________


| [[vectorAdd]], [[vectorDiff]], [[vectorDotProduct]], [[vectorCos]], [[vectorMagnitude]], [[vectorMagnitudeSqr]], [[vectorMultiply]], [[vectorDistance]], [[vectorDistanceSqr]], [[vectorDir]], [[vectorUp]], [[setVectorDir]], [[setVectorUp]], [[setVectorDirAndUp]], [[vectorNormalized]], [[vectorFromTo]] |= See also
| [[vectorAdd]], [[vectorDiff]], [[vectorDotProduct]], [[vectorCos]], [[vectorMagnitude]], [[vectorMagnitudeSqr]], [[vectorMultiply]], [[vectorDistance]], [[vectorDistanceSqr]], [[vectorDir]], [[vectorUp]], [[setVectorDir]], [[setVectorUp]], [[setVectorDirAndUp]], [[vectorNormalized]], [[vectorFromTo]] |SEEALSO=


}}
}}

Revision as of 14:51, 7 April 2019

Hover & click on the images for description

Description

Description:
Cross product of two 3D vectors.
In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain surfaceNormal). To invert direction of the normal, swap arguments around.
Groups:
Uncategorised

Syntax

Syntax:
vector1 vectorCrossProduct vector2
Parameters:
vector1: Array - in form [x, y, z]
vector2: Array - in form [x, y, z]
Return Value:
Array - vector [x, y, z]

crossProduct.jpg

Examples

Example 1:
_vector = [1,1,1] vectorCrossProduct [2,2,2];
Example 2:
_vectorUp = [0,1,0] vectorCrossProduct [-1,0,0]; //[0,-0,1]
Example 3:
_vectorSide = (vectorDir player) vectorCrossProduct (vectorUp player);

Additional Information

See also:
vectorAddvectorDiffvectorDotProductvectorCosvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedvectorFromTo

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note

Notes

Posted on 28 Jun, 2014
ffur2007slx2_5
(ArmA3 1.22)Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [(y1 * z2) – (z1 * y2),(z1 * x2) – (x1 * z2),(x1 * y2) – (y1 * x2)]; It is recommended to use vectorCrossProduct instead of BIS_fnc_crossProduct.

Bottom Section