vectorCrossProduct: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
m (Text replacement - "\| *((\[\[[a-zA-Z0-9_ |()]+\]\],? ?)+) * \}\}" to "|seealso= $1 }}")
m (Text replacement - "v1\.[9-9]{2}\.[0-9]{6}" to "v2.00")
Line 12: Line 12:
| vector1 [[vectorCrossProduct]] vector2
| vector1 [[vectorCrossProduct]] vector2


|p1= vector1:  [[Array]] - in form [x, y, z] or 2D (since Arma 3 v1.99.146539, z coordinate is defaulted to 0)
|p1= vector1:  [[Array]] - in form [x, y, z] or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)


|p2= vector2:  [[Array]] - in form [x, y, z] or 2D (since Arma 3 v1.99.146539, z coordinate is defaulted to 0)
|p2= vector2:  [[Array]] - in form [x, y, z] or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)


| [[Array]] -  vector [x, y, z]  
| [[Array]] -  vector [x, y, z]  

Revision as of 10:05, 3 April 2021

Hover & click on the images for description

Description

Description:
Description needed
Groups:
Math - Vectors

Syntax

Syntax:
Syntax needed
Parameters:
vector1: Array - in form [x, y, z] or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
vector2: Array - in form [x, y, z] or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
Return Value:
Return value needed

Examples

Example 1:
_vector = [1,1,1] vectorCrossProduct [2,2,2];
Example 2:
_vectorUp = [0,1,0] vectorCrossProduct [-1,0,0]; //[0,-0,1]
Example 3:
_vectorSide = (vectorDir player) vectorCrossProduct (vectorUp player);

Additional Information

See also:
vectorAddvectorDiffvectorDotProductvectorCosvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedvectorFromTomatrixMultiplymatrixTranspose

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note
Posted on 28 Jun, 2014
ffur2007slx2_5
Arma 3 logo black.png1.22Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [(y1 * z2) – (z1 * y2),(z1 * x2) – (x1 * z2),(x1 * y2) – (y1 * x2)]; It is recommended to use vectorCrossProduct instead of BIS_fnc_crossProduct.